Magnetars as cooling neutron stars with internal heating
نویسندگان
چکیده
منابع مشابه
Magnetars as cooling neutron stars with internal heating
We study thermal structure and evolution of magnetars as cooling neutron stars with a phenomenological heat source in a spherical internal layer. We explore the location of this layer as well as the heating rate that could explain high observable thermal luminosities of magnetars and would be consistent with the energy budget of neutron stars. We conclude that the heat source should be located ...
متن کاملCooling of magnetars with internal layer heating
We model thermal evolution of magnetars with a phenomenological heat source in a spherical internal layer and compare the results with observations of persistent thermal radiation from magnetars. We show that the heat source should be located in the outer magnetar’s crust, at densities ρ 5 × 1011 g cm−3, and the heating rate should be ∼ 1020 erg cm−3 s−1. Heating deeper layers is extremely inef...
متن کاملInternal temperatures and cooling of neutron stars with accreted envelopes
The relationships between the effective surface (Teff ) and internal temperatures of neutron stars (NSs) with and without accreted envelopes are calculated for Teff > 5 × 104 K using new data on the equation of state and opacities in the outer NS layers. We examine various models of accreted layers (H, He, C, O shells produced by nuclear transformations in accreted matter). We employ new Opacit...
متن کاملHeating and cooling of magnetars with accreted envelopes
We study the thermal structure and evolution of magnetars as cooling neutron stars with a phenomenological heat source in an internal layer. We focus on the effect of magnetized (B 1014 G) non-accreted and accreted outermost envelopes composed of different elements, from iron to hydrogen or helium. We discuss a combined effect of thermal conduction and neutrino emission in the outer neutron sta...
متن کاملNeutron star long term cooling - Joule heating in magnetized neutron stars
We present two-dimensional simulations for the cooling of neutron stars with strong magnetic fields (B ≥ 1013 G). We study how the cooling curves are influenced by magnetic field decay. We show that the Joule heating effects are very large and in some cases control the thermal evolution. We characterize the temperature anisotropy induced by the magnetic field and predict the surface temperature...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monthly Notices of the Royal Astronomical Society
سال: 2006
ISSN: 0035-8711,1365-2966
DOI: 10.1111/j.1365-2966.2006.10680.x